The Slingshot Argument
UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane

Rules for □

We assume that the following rules are valid for the □ operator:

Substitution of logical equivalents (Equiv) If φ and ψ are logically equivalent, then
□ψ may be inferred from □φ.

Substitution of codenoting definite descriptions (Coden) From □t_1 = t_2 and φ, where
t_1 and t_2 are definite descriptions, φ^{t_2/t_1} may be inferred, where φ^{t_2/t_1} is the result
of substituting t_2 for some or all of the occurrences of t_1 in φ.

Gödel equivalence (Gödel) From □(a = \alpha(x = a ∧ \Phi x)) may be inferred,
and vice versa (where \Phi is a predicate and \alpha a term).

The Church slingshot

1
2
3
4
5
6
7
8
9
10

\begin{align*}
P \land Q \\
\hline
□P \\
\hline
□(a = \alpha(x = a \land P)) & \text{Equiv, 2} \\
\hline
\alpha(x = a \land P) = \alpha(x = a \land Q) & \text{(provable from 1)} \\
\hline
□(a = \alpha(x = a \land Q)) & \text{Coden, 3, 4} \\
\hline
□Q & \text{Equiv, 5} \\
\hline
□Q \\
\hline
\vdots & \text{(as above)} \\
\hline
□P \\
\hline
□P = □Q & \text{≡ Intro, 2-9}
\end{align*}
The Gödel slingshot

\[a \neq b \land Fa \land Gb \]

1. \[\Box Fa \]
2. \[\Box(a = \forall x(x = a \land Fx)) \quad \text{Gödel, 2} \]
3. \[\forall x(x = a \land x \neq b) = \forall x(x = a \land Fx) \quad \text{(provable from 1)} \]
4. \[\Box(a = \forall x(x = a \land x \neq b)) \quad \text{Coden, 3, 4} \]
5. \[a \neq b \quad \text{Gödel, 5} \]
6. \[\Box(b = \forall x(x = b \land a \neq x)) \quad \text{Gödel, 6} \]
7. \[\forall x(x = b \land a \neq x) = \forall x(x = b \land Gb) \quad \text{(provable from 1)} \]
8. \[\Box(b = \forall x(x = b \land Gb)) \quad \text{Coden, 7, 8} \]
9. \[Gb \quad \text{Gödel, 9} \]
10. \[\Box Gb \]
11. \[\vdots \quad \text{(as above)} \]
12. \[\Box Fa \quad \equiv \text{Intro, 2–13} \]
13. \[\Box Fa \equiv \Box Gb \]

The Church version was first proposed in [2], the Gödel version in [3]. For an early critique of the slingshot argument, see [1]. For a detailed and highly general analysis of the argument, see [4].

References

Problems

Exercise:

1. Prove that ‘\(P\)’ is logically equivalent to ‘\(a = \exists x(x = a \land P)\)’. Use the Russellian equivalences from the handout on Generalized Quantifiers. (Remember: to prove logical equivalence, you need to prove a biconditional using no premises.)

2. Show that (4) in the proof of the Church slingshot can be derived from (1) using standard logical rules and Russell’s definition. (Note that the definite descriptions take narrow scope.)

3. In standard first-order logic it is assumed that every individual constant (e.g. ‘\(a\)’ in the proof above) denotes some object in the domain. That is why the inference from ‘\(F a\)’ to ‘\(\exists x F x\)’ is valid. Suppose we gave up this assumption. We might then change the existential generalization rule as follows:

 \[\Phi a, \exists x(x = a) / \exists x \Phi x \]

 (a) What other changes would we have to make in the system (e.g. in the other quantifier rules) to make it consistent?

 (b) Could you still prove that ‘\(P\)’ is logically equivalent to ‘\(a = \exists x(x = a \land P)\)’ in such a system? Justify your answer. (You may assume that the Russellian equivalence still holds.)

4. Suppose we wanted to say (against Russell) that when there is not a unique \(x\) such that \(F x\), ‘\(G(\exists x F x)\)’ is neither true nor false. Would ‘\(P\)’ still be logically equivalent to ‘\(a = \exists x(x = a \land P)\)’? Why or why not? (Careful: In this case the Russellian equivalence could not be used. You might try thinking of rules for ‘\(\exists\)’ that would still be valid. What would validity mean in such a system?)